
Calibration Ordering Information

Our <u>NVLAP</u> Lab Code 200502-0 (National Voluntary Laboratory Accreditation Program) Accredited Metrology Laboratory provides comparison temperature calibrations from -196 °C to 1450 °C [-321 °F to 2642 °F] on the International Temperature Scale of 1990 (ITS-90) for temperature sensors and instruments.

Pyromation's laboratory managerial staff and technical team have documented education, training, technical knowledge and experience to precisely perform their assigned functions. The laboratory's test environment is constantly monitored and controlled to maintain all required conditions, while access is strictly defined and controlled.

Our Laboratory equipment includes fluidized baths and tube furnaces, standard platinum resistance thermometers, and type "B" and "S" thermocouples. All standards and calibrations are traceable to the National Institute of Standards and Technology (NIST), or have been derived from accepted values of natural physical constants, or by the ratio of self calibration. Note: Our quality system meets or exceeds the requirements for NIST Handbook 150:2006, ISO 9001:2000, ISO 10012-1:1992(E), ANSI/NCSL Z540-1-1994, and MIL-STD-45662A.

1A	Calibrations	Per	AMS	2750 ^[2]

CODE	DESCRIPTION	ASTM E230 Tolerances
CAL-AMS-TUS	Temperature Uniformity Survey Calibration - All sensors of line item calibrated to specified temperatures.	± 2.2 °C [± 4 °F] or ± 0.75%
CAL-AMS-SAT	System Accuracy Test Calibration - All sensors of line item calibrated to specified temperatures.	$\begin{array}{l} (J,K,T,E,N)\pm1.1\ ^{\circ}C\ [\pm2\ ^{\circ}F]\ or\ \pm0.4\%\\ (R,S)\pm0.6\ ^{\circ}C\ [\pm1\ ^{\circ}F]\ or\ \pm0.1\%\\ (B)\pm0.6\ ^{\circ}C\ [\pm1\ ^{\circ}F]\ or\ \pm0.25\% \end{array}$
CAL-AMS-CRM	Control, Recording & Monitoring Calibration - All sensors of line item calibrated to specified temperatures.	Class 1 & 2: ± 1.1 °C [± 2 °F] or ± 0.4% Class 3 to 6: ± 2.2 °C [± 4 °F] or ± 0.75%
CAL-AMS-L	Load Calibration - All sensors of line item calibrated to specified temperatures.	± 2.2 °C [± 4 °F] or ± 0.75%

1B Lot Calibrations Per AMS 2750^{[1][2]}

CODE	DESCRIPTION	Max. Lot	Length	ASTM E230 Tolerances	Allowable Delta Limits	
LOT-AMS-TUS	Temperature Uniformity Survey Lot Calibration - Beginning and End - E One sample from the beginning and the end of the lot will be tested at specified temperatures. I		5000 ft	± 2.2 °C [± 4 °F] or ± 0.75%		
LOT-AMS-TUS			2000 ft	$\pm 2.2 \text{ C} [\pm 4 \text{ F}] \text{ OI } \pm 0.75\%$	± 1.1 °C [± 2 °F]	
LOT-AMS-SAT	System Accuracy Test Lot Calibration - One sample from the beginning and the end of the lot will be tested at specified temperatures.	Base	5000 ft	(J, K, T, E, N) ± 1.1 °C [± 2 °F] or ± 0.4% (R,S) ± 0.6 °C [± 1 °F] or ± 0.1%	± 1.1 °C [± 2 °F]	
LOT-ANIS-SAT		Noble	2000 ft	$(R,S) \pm 0.6 \ C \ [\pm 1 \ F] \ of \pm 0.1\%$ (B) ± 0.6 °C [± 1 °F] or ± 0.25%		
LOT-AMS-CRM	Control, Recording & Monitoring Lot Calibration - One sample from the beginning and the end of the lot will be tested at specified temperatures.		5000 ft	Class 1 & 2: ± 1.1 °C [± 2 °F] or ± 0.4%	± 1.1 °C [± 2 °F]	
LOT-AMS-CRIM			2000 ft	Class 3 to 6: ± 2.2 °C [± 4 °F] or ± 0.75%		
LOT-AMS-L	Load Lot Calibration - One sample from the beginning and the end of the		5000 ft	± 2.2 °C [± 4 °F] or ± 0.75%		
LOT-AMS-L	lot will be tested at specified temperatures.	Noble	2000 ft	± 2.2 C [±4 F] 0I ± 0.75%	± 1.1 °C [± 2 °F]	

[1] Lot AMS calibration reports contain beginning, end and average temperatures.

[2] Maximum interval between temperatures is 140 °C [250 °F]

Minimum Sensor Length Requirements for Temperature Calibrations

-196 °C	-75 °C	(-40 to 0) °C	(0 to 100) °C	(40 to 215) °C	(200 to 500) °C	(425 to 1204) °C	(800 to 1450) °C
[-321 °F]	[-103 °F]	[-40 to 32] °F	[32 to 212] °F	[104 to 420] °F	[392 to 932] °F	[800 to 2200] °F	[1472 to 2642] °F
12 Inch	12 Inch	6 Inch	6 Inch	6 Inch	18 Inch	18 Inch	30 Inch

THERMOCOUPLES - Thermocouples are the most common, convenient, and versatile devices used to measure temperature. They convert units of heat into useable engineering units that serve as input signals for process controllers and recorders.

A thermocouple consists of a welded 'hot' junction between two dissimilar metals - usually wires - and a reference junction at opposite ends of the parent materials. Heating the 'hot' junction in the working environment produces a temperature gradient which generates an Electromotive Force (EMF). The EMF appears across the free ends of the thermocouple wires where it is measured and converted into units of heat calibration. Through selection of appropriate thermocouple wires and sheath components, thermocouples are suitable to be used in temperature ranges from (-200 to 2316) °C [-328 to 4200] °F.

RESISTANCE TEMPERATURE DETECTORS - Resistance temperature detectors (RTD) accurately sense temperature with an excellent degree of repeatability and interchangeability of elements. The RTD is composed of certain metallic elements whose change in resistance is a function of temperature. In operation, a small excitation current is passed across the element, and the voltage, which is proportional to resistance, is then measured and converted to units of temperature calibration. The RTD element is manufactured by winding a wire (wire wound elements) or plating a film (thin film elements) on a ceramic or glass core and sealing the element within a ceramic or glass capsule.

Since most RTDs have a low initial resistance, often 100 ohms, and have a small change in resistance per unit of temperature range, the resistance of the lead wire is often compensated for with a three or four wire bridge configuration built into the measuring devices. By selecting the proper elements and protective sheathing, RTDs can operate in a temperature range of (-200 to 600) °C [-328 to 1112] °F.

THERMISTORS - A thermistor is an economical means of precisely sensing heat over a limited range of temperatures. A thermistor is a metal oxide whose change in resistance is typically an inverse function of the change in temperature. An excitation current is passed across the sensor and the voltage, which is proportional to the resistance, is measured and converted to units of heat calibration. Since thermistors usually have a large base resistance and a large change in resistance per unit of temperature change, compensation for lead wire length is not generally needed. Thermistors can operate across a temperature range of (-40 to 150) °C [-40 to 302] °F by selecting the proper sensor and protective materials.

ADDITIONAL REQUIREMENTS - Other components usually essential in integrating the principles of thermocouple, RTD, and thermistor sensors into a functioning system may include: (1) a protection tube or sheath of a material suitable to protect the sensing element from the environment surrounding the point of measurement; (2) a connecting head and terminal block, or possibly a temperature transmitter; (3) leadwire of the correct material and insulation to connect the temperature sensor and the process instrumentation; and (4) recording or controlling instrumentation and control devices to provide a continuous temperature history of the system and to provide constant or programmed temperature regulation.

Thermocouple Material Specifications

The thermocouple element materials listed below are those most commonly found in process applications. Selection of the proper thermocouple type for a particular application is determined by temperature expectations and by the environment in which the sensor will be placed. The following temperature and application tables are intended to aid in this selection. The thermocouples are listed by ASTM letter designations per thermocouple type.

Letter Designated Thermocouples

TYPE		TEMPERATURE RANGE	
J E230	Iron (+) Copper - 45% Nickel (Constantan) (-)	(0 to 760) °C [32 to 1400] °F	Suitable for vacuum, reducing, or inert atmospheres, oxidizing atmosphere with reduced life. Iron oxidizes rapidly above 538 °C [1000 °F] so only heavy gauge wire is recommended for high temperature. Bare elements should not be exposed to sulphurous atmospheres above 538 °C [1000 °F].
K E230	Nickel - 10% Chromium (+) Nickel - 2% Aluminum, 2% Manganese, 1% Silicon (-)	(0 to 1260) °C [32 to 2300] °F	Recommended for continuous oxidizing or neutral atmospheres. Mostly used above 538 °C [1000 °F]. Subject to failure if exposed to sulphur. Preferential oxidation of chromium in positive leg at certain low oxygen concentrations causes 'green rot' and large negative calibration drifts most serious in the (816 to 1038) °C [1500 to 1900] °F range. Ventilation or inert-sealing of the protection tube can prevent this.
N E230	Nickel - 14% Chromium, 1 1/2% Silicon (+) Nickel - 4 1/2% Silicon - 1/10% Magnes- ium (-)	(0 to 1260) °C [32 to 2300] °F	Can be used in applications where Type K elements have shorter life and stability problems due to oxidation and the development of 'green rot'.
T E230	Copper (+) Copper - 45% Nickel (Constantan) (-)	(-200 to 370) °C [-328 to 700] °F	Useable in oxidizing, reducing, or inert atmospheres as well as vacuum. Not subject to corrosion in moist atmospheres. Limits of error published for sub-zero temperature ranges.
E E230	Nickel - 10% Chromium (+) Copper - 45% Nickel (Constantan) (-)	(0 to 870) °C [32 to 1600] °F	Recommended for continuously oxidizing or inert atmospheres. Sub-zero limits of error not established. Highest thermoelectric output of common calibrations.
R E230	Platinum - 13% Rhodium (+) Platinum (-)		Recommended for high temperature. Must be protected with non-metallic protection tube and ceramic insulators. Continued
S E230	Platinum - 10% Rhodium (+) Platinum (-)	(538 to 1482) °C [1000 to 2700] °F	high temperature usage causes grain growth which can lead to mechanical failure. Negative calibration drift caused by Rhodium diffusion to pure leg as well as from Rhodium volatilization. Type R is used in industry; Type S in the laboratory.
B E230	Platinum - 30% Rhodium (+) Platinum - 6% Rhodium (-)	(871 to 1704) °C [1600 to 3100] °F	Same as R & S but output is lower. Also less susceptible to grain growth and drift.
C E230	95% Tungsten - 5% Rhenium (+) 74% Tungsten - 26% Rhenium (-)	(0 to 2315) °C [32 to 4200] °F	Very high temperature applications in inert or vacuum. Preferred over Tungsten/Tungsten-26% Rhenium because it is less brittle at low temperatures.

Non-Letter Designated Thermocouples

TYPE		TEMPERATURE RANGE	
M E1751	Nickel - 18% Molybdenum (+) Nickel - 0.8% Cobalt (-)	(-50 to 1410) °C [-58 to 2570] °F	High temperature applications in inert or vacuum atmosphere. Useful in many hydrogen applications. Continuous cycling causes excessive grain growth.
P E1751	Platinel II® Platinel 5355 (+) Platinel 7674 (-)	(0 to 1395) °C [32 to 2543] °F	Noble metal combination which approximates Type K curve but has much improved oxidation resistance. Should be treated as any noble metal calibration.

Platinel® is a registered trademark of BASF Catalysts.

Thermocouple Initial Material Tolerances

The tolerances shown in the table below apply to new, essentially homogeneous thermocouple wire in the size range of 30 AWG to 8 AWG. These tolerances only apply to thermocouples used at temperatures not exceeding the recommended limits. If thermocouples are used at temperatures above the recommended limits, or in detrimental enviornments, the below stated tolerances may not apply.

Tolerances on Initial Values of EMF vs Temperature for Thermocouples

TYPE	TEMPERATURE RANGE for STANDARD TOLERANCES	STANDARD TOLERANCES	TEMPERATURE RANGE for SPECIAL TOLERANCES	SPECIAL TOLERANCES
J	(0 to 293) °C [32 to 559] °F (293 to 760) °C [559 to 1400]	± 2.2 °C [± 4 °F] F ± 0.75%	(0 to 275) °C [32 to 527] °F (275 to 760) °C [527 to 1400] °F	± 1.1 °C [± 2 °F] ± 0.4%
к	(-200 to -110) °C [-328 to -166] (-110 to 0) °C [-166 to 32] °F (0 to 293) °C [32 to 559] °F (293 to 1260) °C [559 to 2300]	± 2.2 °C [± 4 °F] ^[1] ± 2.2 °C [± 4 °F]	(0 to 275) °C [32 to 527] °F (275 to 1260) °C [527 to 2300] °F	^[2] ± 1.1 °C [± 2 °F] ± 0.4%
N	(0 to 293) °C [32 to 559] °F (293 to 1260) °C [559 to 2300]	± 2.2 °C [± 4 °F] ^[1] F ± 0.75%	(0 to 275) °C [32 to 527] °F (275 to 1260) °C [527 to 2300] °F	± 1.1 °C [± 2 °F] ± 0.4%
т	(-200 to -67 °C [-328 to -89] °I (-67 to 0) °C [-89 to 32] °F (0 to 133) °C [32 to 271] °F (133 to 370) °C [271 to 700] °F	± 1 °C [± 1.8 °F] ^[1] ± 1 °C [± 1.8 °F]	(0 to 125) °C [32 to 257] °F (125 to 370) °C [257 to 700] °F	^[2] ± 0.5 °C [± 0.9 °F] ± 0.4%
E	(0 to 870) °C [32 to 1600] °F	± 1.7 °C [± 3.06 °F] ^[3] or ± 0.5%	(0 to 870) °C [32 to 1600] °F	± 1.0 °C [± 1.8 °F] ^[3] or ± 0.4%
R	(0 to 600) °C [32 to 1112] °F (600 to 1480) °C [1112 to 2642]		(0 to 600) °C [32 to 1112] °F (600 to 1480) °C [1112 to 2700] °F	± 0.6 °C [± 1.1 °F] ± 0.1%
S	(0 to 600) °C [32 to 1112] °F (600 to 1480) °C [1112 to 2700]		(0 to 600) °C [32 to 1112] °F (600 to 1480) °C [1112 to 2642] °F	± 0.6 °C [± 1.1 °F] ± 0.1%
В	(870 to 1700) °C [1600 to 3100]	°F ± 0.5%	(870 to 1700) °C [1600 to 3100] °F	± 0.25%
С	(0 to 400) °C [32 to 752] °F (400 to 2315) °C [752 to 4200] °	± 4.4 °C [± 8 °F] ± 1.0%	Not Available	

Reference Junction 0 °C [32 °F]. Published in ASTM E230

[1] Thermocouples and thermocouple materials are supplied to meet the tolerance specified for temperatures above 0 °C. A thermocouple material may not conform to the published sub-zero limits of error for that material when purchased, unless conformance is agreed upon by customer and Pyromation when ordering.

[2] Special tolerances for sub-zero temperatures have not yet been established. The following limits for calibrations of types E and T are useful to start discussion between customer and Pyromation.

(-200 to 0) °C Type T ± 0.5 °C or $\pm 0.8\%$, whichever is greater

[3] The standard tolerances shown do not apply to Type E mineral-insulated, metal-sheathed (MIMS) thermocouples and thermocouple cables. The standard tolerances for MIMS Type E constructions are the greater of \pm 2.2 °C or \pm 1.75 % from 0 to 870 °C and the greater of \pm 2.2 °C or \pm 2 % from -200 to 0 °C.

Initial values of tolerance for Type J and special tolerance for Type K thermocouples below 0 °C are not given due to the characteristics of the materials.

CODE	MATERIAL	TEMPERATURE RANGE	TOLERANCE
М	Ni18Mo/Ni	(-50 to 1410) °C [-58 to 2570] °F	± 0.75%
Р	Platinel [®] II	(0 to 1395) °C [32 to 4200] °F	± 0.10 mV

Platinel[®] is a registered trademark of BASF Catalysts.

Thermocouples must be selected to meet application conditions and only general recommendations of size and type can be given. Selection considerations involve useful length of service life, temperature, atmosphere, and response time. Smaller gauges provide faster response times and less service life. Larger gauges provide longer service life and reduced response times. The recommended temperature limits below are to be used as a guideline in the selection process, and the table applies only to thermocouples protected by a suitable protecting tube, sheath, or well. The color coding chart below provides ANSI/ASTM standard color codes found on thermocouple wire, extension wire, and plug and jack connectors.

Suggested Upper Temperature Limits For Protected Industrial Thermocouples

TYPE	MAXIMUM TE	EMPERATURI	E				
TIPE	8 GAUGE	11 GAUGE	14 GAUGE	20 GAUGE	24 GAUGE	28 GAUGE	30 GAUGE
	°C [°F]	°C [°F]	°C [°F]	°C [°F]	°C [°F]	°C [°F]	°C [°F]
Т			370 [700]	260 [500]	200 [400]	200 [400]	150 [300]
J	760 [1400]		590 [1100]	480 [900]	370 [700]	370 [700]	320 [600]
E	870 [1600]		650 [1200]	540 [1000]	430 [800]	430 [800]	370 [700]
K, N	1260 [2300]		1090 [2000]	980 [1800]	870 [1600]	870 [1600]	760 [1400]
М		1287 [2250]	1287 [2250]				
R, S					1480 [2700]		
В					1700 [3100]		
С					2330 [4200]		

THERMO- COUPLE		U.S. & CANAI ANSI/ASTM E230, AM		*	
TYPE	ALLOY COMBINATION	THERMOCOUPLE GRADE	EXTENSION GRADE	PLUG & JACK	
т	Copper	Brown	+ Blue Blue	Blue	
-	Constantan (Copper-Nickel)	Red -	- Red		
J	Iron (magnetic)	Brown	+ White Black	Black	
J	Constantan (Copper-Nickel)	Red -	- Red		
Е	Nickel - Chromium	Brown	+ Purple Purple	Purple	
	Constantan (Copper- Nickel)	Red -	- Red		
ĸ	Nickel - Chromium	Brown	+ Yellow Yellow	Yellow	
n	Nickel - Aluminium (magnetic)	Red -	- Red	\bigcirc	
N	Nicrosil (Nickel-Chromium- Silicon)	Brown Orange +	+ Orange Orange	Orange	
	Nisil (Nickel-Silicon-Magnesium)	Red -	- Red	\bigcirc	
s	Platinum Rhodium -10%	None	+ Black Green	Green	
5	Platinum	Established	- Red		
R	Platinum Rhodium -13%	None	+ Black Green	Green	
	Platinum	Established	- Red		
	Platinum Rhodium - 30%	None	+ Gray Gray	White (Uncom-	
B	Platinum Rhodium - 6%	Established	- Red (Compensated Cable)	pensated)	
•	Tungsten Rhenium - 5%	None	+ Green Red	Red	
С	Tungsten Rhenium - 26%	Established	Red		

🚯 pyromation 👔

Tubing, Sheath, Protection Tube, and Well Materials

Pyromation provides a variety of common tubing, MgO sheath, protection tube, and drilled-well materials to protect temperature sensing elements from the environmental conditions typically found in industrial process applications. The following tables are intended as guidelines to aid in the selection of the proper materials for sensors used in different environments. Consult the factory for the availability of other protective materials for specialty applications. NOTE: All chemical compositions and temperature ratings are nominal and are stated as received from suppliers.

Material Code Index

METALS	METALS					CERAMIC	CERAMICS and COMPOSITE MATERIALS		
CODE	MATERIAL	CODE	MATERIAL	CODE	MATERIAL	CODE	MATERIAL		
2	Molybdenum	25	Tantalum	37	Alloy 800	12	Metal Ceramic LT-1		
3	Alloy 600	26	Titanium	38	Alloy 20	13	Vesuvius		
4	310 S.S.	27	Alloy 400	41	HR - 160 [®]	14	Cerite [®] - II		
5	446 S.S.	28	Alloy B	50	Zirconium	15	Cerite [®] - III		
6	Carbon Steel	29	Alloy C -276	59	F22-1	16	Mullite		
7	Alloy 601	31	Nickel 200	60	F11-2	17	Alumina		
8	316 S.S.	32	304 LC S.S.	61	A105	18	Silicon Carbide		
9[2]	304 S.S.	33	316 LC S.S.	91	F91	19	Hexoloy [®] SA		
11	Cast Iron	35	321 S.S.			71	Recrystallized Silicon Carbide		
22	Brass	36	347 S.S.						
23	Copper								
24	Platinum								

Metals CATALOG TYPICAL AREAS OF USE MATERIAL MATERIAL/COMPOSITION APPLICATION GUIDELINE INFORMATION MGO PROT. DRILLED TUBING CODE SHEATHS TUBES WELLS 2 MOLYBDENUM Х Х Up to 1926 °C [3500 °F] in inert atmospheres, to 1871 °C [3400 °F] 99.9% min. Molybdenum, in vacuum at 10-4 torr. Has poor mechanical shock resistance after 0.03% Tungsten heated to 1038 °C [1900 °F]. Oxidizes in air above 427 °C [800 °F]. 3 ALLOY 600 (UNS N06600) Х Х Х Х Up to 1149 °C [2100 °F] under oxidizing conditions. Reducing 72% Nickel, 15% Chromium, 8% Iron conditions reduce maximum temperature to 1038 °C [1900 °F]. Must not be placed in sulfurous atmospheres above 538 °C [1000 °F]. Main areas of application for thermocouple protection are carburizing, annealing and hardening furnaces, Cyanide saltbaths, blast furnace downcomers, open hearth flue stacks, steel soaking pits, waste heat boilers, ore roasters, cement exit flues, incinerators, and glass tank flues. (INCONEL® 600) 310 STAINLESS STEEL (UNS S31000) 4 Х Х Х Х Up to 1038 °C [1900 °F] continuous, 1149 °C [2100 °F] intermittent. 25% Chromium, 20% Nickel Mechanical and corrosion resistance similar to and better than 304 stainless steel. 5 446 STAINLESS STEEL (UNS S44600) Х Х Х Up to 1093 °C [2000 °F] under oxidizing conditions. Excellent high 27% Chromium temperature corrosion and oxidizing resistance. Main areas of application are hardening, nitriding, and annealing furnaces, salt baths, molten lead, tin and babbitt metal, sulfurous atmospheres. Not for carburizing atmospheres. Other areas of application are steel soaking pits, tinning pots, waste heat boilers, ore roasters, cement exit flues, boiler tubes to 982 °C [1800 °F], incinerators to 1093 °C [2000 °F], glass flue tanks. 6 CARBON STEEL^[1] х Х Up to 538 °C [1000 °F] in non-oxidizing environments. Main areas of Х usage are galvanizing pots, tinning pots, molten babbitt metal, molten mangesium, molten zinc, Petroleum refinery applications such as dewaxing and thermal cracking. ALLOY 601 (UNS N06601) Similar applications to Inconel® 600 but with superior resistance to 7 х Х Х 61% Nickel, 23% Chromium, 14% Iron, sulfur, high temperature oxidation resistance to 1260 °C [2300 °F]. (INCONEL® 601) 1 35% Aluminum 8 316 STAINLESS STEEL (UNS S31600) X х Х Х Up to 927 °C [1700 °F] under oxidizing conditions. Same areas of applications as 304 stainless steel. Has improved resistance to mild acid 16% Chromium, 12% Nickel 2% Molvbdenum and pitting corrosion. Up to 899 °C [1650 °F] under oxidizing conditions. Has general **9**[2] 304 STAINLESS STEEL (UNS S30400) Х Х Х Х 18% Chromium, 8% Nickel good oxidation and corrosion resistance in a wide range of industrial environments. Subject to carbide precipitation, which can reduce corrosion resistance in the (427 to 538) °C [800 to 1000] °F range Good mechanical properties from (-184 to 788) °C [-300 to 1450] °F. Main areas of usage for thermocouple protection is in chemicals, foods, plastics and petroleum. Generally regarded as standard protection tube material

[1] Materials available in various alloys - consult factory

[2] Machined fittings may be supplied as 303 Series stainless steel

Hexoloy® is a registered trademark of Saint-Gobain Ceramics Corporation

INCONEL[®] is a registered trademark of Special Metals Corporation HR-160[®] is a registered trademark of Haynes International, Inc.

Tubing, Sheath, Protection Tube, and Well Materials

Metals

Metals						
CATALOG		TYPICA	L AREAS OF	USE		
MATERIAL CODE	MATERIAL/COMPOSITION	TUBING	MGO SHEATHS	PROT. TUBES	DRILLED WELLS	APPLICATION GUIDELINE INFORMATION
11	CAST IRON			x		Up to 704 °C [1300 °F] in oxidizing conditions. Main area of usage is in molten non-ferrous metals, daily whiting is recommended. Can be used to 871 °C [1600 °F] under reducing conditions.
22	BRASS ^[1]	х			X	Up to 538 °C [1000 °F] continuous. Good thermal conductivity and mechanical strength.
23	COPPER	X	X Limited Avail.			Up to 260 °C [500 °F] continuous. Excellent thermal conductivity. Poor mechanical strength.
24	PLATINUM ^{®1}	X	x			Up to 1374 °C [2500 °F] continuous oxidizing atmospheres. Good thermal conductivity. Used in applications where high temperature, but no vacuum or inert atmosphere is available.
25	TANTALUM ^[2]	x	x		X ^[2]	Up to 2349 °C [4350 °F]. Good resistance to corrosion and quick heat conductivity. Good mechanical strength. Used in chemical processes and high temperatures in vacuum or inert atmosphere.
26	TITANIUM	х	Х		X	Up to 1260 °C [2300 °F] in inert or vacuum atmosphere. Acid and chemical resistant. Oxidation resistance to 538 °C [1000 °F].
27	ALLOY 400 (UNS N04400) 67% Nickel 30% Copper	X	x	X	X	Up to 538 °C [1000 °F] in sulfur-free atmosphere. Excellent resistance to corrosion. Used in chemical processing and food processing equipment. MONEL®400
28	ALLOY B (UNS N10001) 62% Nickel 28% Molybdenum, 5% Iron	x	X Limited Avail.	X	X	Up to 815 °C [1500 °F] in inert or vacuum atmospheres. 538 °C [1000 °F] in air. Has excellent resistance to pitting, to stress-corrosion cracking. Suitable for most chemical processes. Application excellent in hydrochloric acid. (HASTELLOY® B)
29	ALLOY C-276 (UNS N10276) 54% Nickel 16% Molybdenum, 15% Chromium	x	X Limited Avail.	X	X	Up to 1038 °C [1900 °F] in oxidizing atmospheres. Exceptional resistance to a wide variety of chemical environments. Withstands wet chlorine gas, hypochlorite and chlorine dioxide. (HASTELLOY® C-276)
31	NICKEL 200 (UNS N02200) 99% Nickel		X Limited Avail.		X	Up to 899 °C [1650 °F] in sulfur-free atmospheres. Good corrosion- resistance. Used in contact with reducing acids, foods, chemicals caustics, rayon, and plastics.
32	304 STAINLESS STEEL LOW CARBON (UNS S30403) 18% Chromium, 8% Nickel	x	x	X	X	Same characteristics as 304 except the low carbon allows for corrosion- resistant weld areas. Not recommended to be used above 427 °C [800 °F]. (0.03% max. carbon)
33	316 STAINLESS STEEL LOW CARBON (UNS S31603) 16% Chromium 12% Nickel 2% Molybdenum	Х	x	X	X	Same characteristics as 316 except the low carbon allows for corrosion- resistant weld areas. Not recommended to be used above 427 °C [800 °F]. (0.03% max. carbon)
35	321 STAINLESS STEEL (UNS S32100) 18% Chromium 10% Nickel, Titanium	x	x	X	X	Good corrosion resistance between (482 to 871) °C [900 to 1600] °F. Used where conditions are too severe for low carbon stainless steels.
36	347 STAINLESS STEEL (UNS S34700) 18% Chromium, 10% Nickel, Columbium	x	X Limited Avail.		X	Good corrosion resistance between (482 to 871) °C [900 to 1600] °F. Used where conditions are too severe for low carbon stainless steels.
37	ALLOY 800 (UNS N08800) 33% Nickel 42% Iron 21% Chromium	x	X Limited Avail.	x	X	Strong resistance to oxidation and carburization at high temperatures. Resists sulfur attack, internal oxidation, and scaling in a wide variety of atmospheres. (INCOLOY® 800)
38	ALLOY 20 (UNS N08020) 35% Nickel 35% Iron 20% Chromium Columbium		X Limited Avail.	X	X	Superior resistance to stress-corrosion cracking in boiling 20-40% sulfuric acid. Also used in high octane gas, solvents, explosives, heavy chemicals and agri-chemicals. (CARPENTER 20Cb-3 [®])
41	HR - 160° (UNS N12160) 37% Nickel 30% Cobalt 28% Chromium		x	x		A premier alloy that provides excellent resistance to sulphur, vanadium, chlorines, chlorides, and other salt deposits up to 1204 °C [2200 °F]. A superior material for use in aggressive waste incineration processes.

[1] Materials available in various alloys - consult factory

[2] Generally applied as a well jacket

MONEL® and INCOLOY® are registered trademarks of Special Metals Corporation

HASTELLOY® is a registered trademark of Hayman International, Inc.

 $20 Cb{-}3^{\circ}$ is a registered trademark of Carpenter Technology Corporation HR-160° is a registered trademark of Haynes International, Inc.

Metals

CATALOG		TYPICAI	AREAS OF	USE		
MATERIAL CODE	MATERIAL/COMPOSITION	TUBING	MGO SHEATHS	PROT. TUBES	DRILLED WELLS	APPLICATION GUIDELINE INFORMATION
50	ZIRCONIUM (UNS R60702) 99.2% Zr	х		х	x	Up to 400 °C [752 °F]. Zirconium has a high affinity to oxygen that results in the formation of a regenerative protective oxide layer in most media. This oxide layer gives the material chemical resistance and erosive resistance in high velocity applications. Zirconium is resistant to corrosion from most organic and inorganic acids and salts and it is totally resistant to alkalis.
59	F22 (UNS K21590) Cr 2.25%, Mo 1%			Х	х	Carbon steel alloy typically used in power plant, boiler and turbine applications.
60	F11 (UNS K11572) Cr 1.25%, Mo .5%, Si			Х	х	Carbon steel alloy typically used in power plant, boiler and turbine applications.
61	A105 C, Si				х	Carbon steel alloy typically used in power plant, boiler and turbine applications.
91	F91 (UNS K91560) Cr 9%, Mo 1%, V			х	х	Chrome Moly alloy typically used in power plant, boiler and turbine applications.

Ceramics and Composite Materials

CATALOG		TYPICAL	AREAS OF	USE		
MATERIAL CODE	MATERIAL/ COMPOSITION	TUBING	MGO SHEATHS	PROT. TUBES	DRILLED WELLS	APPLICATION GUIDELINE INFORMATION
12	METAL CERAMIC LT-1 (slip cast composite of chromium and aluminum oxide.) 77% chromium, 23% aluminum oxide			X		Up to 1374 °C [2500 °F] in oxidizing conditions. Main areas of usage are molten copper base alloys to 1149 °C [2100 °F], blast furnace and stack gases to 1316 °C [2400 °F], sulfur burners to 1093 °C [2000 °F], cement kilns to 1204 °C [2200 °F], chemical process reactors to 1371 °C [2500 °F]. A ceramic primary tube is required when a noble metal thermocouple is used.
13	VESUVIUS			X		Up to 927 °C [1700 °F]. For use in aluminum and other non-ferrous metals. Not wetted by molten aluminum and other non-ferrous metals. No contamination. Resists thermal and mechanical shock. Brittle after heating. Handle carefully.
14	CERITE®-II (Cast oxide composites)			X		Up to 1093 °C [2000 °F]. For submerged use in aluminum and other non-ferrous metals. Not wetted by molten aluminum and other non-ferrous metals. No contamination. Good thermal and mechanical shock resistance.
15	CERITE®-III (Cast oxide composites)			X		Up to 1093 °C [2000 °F]. For submerged use in aluminum and other non-ferrous metals. Not wetted by molten aluminum and other non-ferrous metals. No contamination. Good thermal and mechanical shock resistance.
16	MULLITE 63% alumina			X		Up to 1510 °C [2750 °F] when supported. Has poor mechanical shock resistance, but good thermal shock resistance. For barium chloride salt baths to 1288 °C [2350 °F]. Should be vertical mounted or supported if horizontal. For high temperature applications of ceramic industry, heat treating, glass manufacture. Impervious to gases at high temperatures.
17	ALUMINA (Recrystallized 99.7% AL ₂ O ₃)			X		Up to 1889 °C [3400 °F] when supported. Has only fair resistance to thermal and mechanical shock. Essentially same applications as Mullite including induction melting, vacuum furnaces. Impervious to gases at high temperatures.
18	SILICON CARBIDE 90% silicon carbide, 9% silicon dioxide, balance aluminum oxide			X		Up to 1650 °C [3000 °F]. For an outer protection tube with Alumina® or mullite primary tube. For brick and ceramic kilns, steel soaking pits, molten non-ferrous metals. Can withstand direct flame impingement. Fair thermal shock resistance. Approximately 14% porosity.
19	HEXOLOY [®] SA sintered alpha, silicon carbide			X		Up to 1650 °C [3000 °F] in air. High thermal conductivity, excellent wear and abrasion resistance, high thermal shock resistance, and good mechanical strength. Superior chemical resistance in both reducing and oxidizing environments. Attacked by Halides, fused caustics, and ferrous metals.
71	RECRYSTALLIZED SILICON CARBIDE (Halsic R) 99% silicon			X		Up to 1600 °C [2912 °F] in oxidizing atmosphere, and 2000 °C [3632 °F] in a vacuum atmosphere. Used as an outer protection tube in hot stack emissions, combustion chambers, chemical reactors, and incineration of medical, municipal, and industrial waste. Can withstand direct flame impingement, has excellent thermal shock characteristics, and excellent corrosion resistance. A ceramic inner tube is required when used with noble metal thermocouples.

Hexoloy® is a registered trademark of Saint-Gobain Ceramics Corporation

The information contained in the following pages is intended as a guideline only for general sensor usage. The specific application and the environmental conditions may require that other sensor sheath materials, diameters, or construction styles be used to provide optimum temperature measurement results. The dimensions, temperature ratings, and response times indicated are nominal, and they may vary in actual practice.

Thermocouple Types and Sizes

SHEAT	SHEATH DIAMETER (inches) - AWG WIRE SIZE											
TYPE	MATERIAL	0.020 O.D.	0.032 O.D.	0.040 O.D.	1/16 O.D.	1/8 O.D.	3/16 O.D.	1/4 O.D.	3/8 O.D.			
E	Chromel-Constantan	38	35	32	30	24	21	19	15			
J	Iron-Constantan	38	35	32	30	24	21	19	15			
К	Chromel-Alumel	38	35	32	30	24	21	19	15			
Т	Copper-Constantan	38	35	32	30	24	21	19	15			
Ν	Nicrosil-Nisil	38	35	34	-	29	21	19	15			

Recommended Upper Temperature Limits For Protected Thermocouples Upper Temperature Limits (F) For Various Sheath & Diameter Combinations

		SHEATH DIAMET	ER (inches)				
SHEATH TYPE	SHEATH MATERIAL	0.020, 0.032, 0.040	1/16	1/8	3/16	1/4	3/8
		TEMPERATURE R	ANGE				
J		(0 to 260) °C [32 to 500] °F	(0 to 441) °C [32 to 825] °F	(0 to 521) °C [32 to 970] °F	(0 to 621) °C [32 to 1150] °F	(0 to 721) °C [32 to 1330] °F	(0 to 721) °C [32 to 1330] °F
K or N	– 316 S.S.	(0 to 700) °C [0 to 1290] °F	(-200 to 921) °C [-328 to 1690] °F	(-200 to 927) °C [-328 to 1700] °F	(-200 to 927) °C [-328 to 1700] °F	(-200 to 927) °C [-328 to 1700] °F	(-200 to 927) °C [-328 to 1700] °F
E		(-200 to 260) °C [-328 to 570] °F	(-200 to 510) °C [-328 to 950] °F	(-200 to 649) °C [-328 to 1200] °F	(-200 to 732) °C [-328 to 1350] °F	(-200 to 821) °C [-328 to 1510] °F	(-200 to 821) °C [-328 to 1510] °F
Т		(-200 to 260) °C [-324 to 500] °F	(-200 to 260) °C [-328 to 500] °F	(-200 to 371) °C [-328 to 700] °F	(-200 to 371) °C [-328 to 700] °F	(-200 to 371) °C [-328 to 700] °F	(-200 to 371) °C [-328 to 700] °F
K or N	ALLOY	(0 to 700) °C [0 to 1290] °F	(-200 to 921) °C [-328 to 1690] °F	(-200 to 1071) °C [-328 to 1960] °F	(-200 to 1149) °C [-328 to 2100] °F	(-200 to 1149) °C [-328 to 2100] °F	(-200 to 1149) °C [-328 to 2100] °F
E	600	(-200 to 300) °C [-328 to 570] °F	(-200 to 510) °C [-328 to 950] °F	(-200 to 649) °C [-328 to 1200] °F	(-200 to 732) °C [-328 to 1350] °F	(-200 to 821) °C [-328 to 1510] °F	(-200 to 821) °C [-328 to 1510] °F

This table gives the suggested upper temperature limits for various thermocouples in several common sheath sizes. It does not address compatibility considerations between the thermoelement materials and the sheath containing them. The temperature limits given here are intended only as a guide to the purchaser and should not be taken as absolute values, nor as guarantees of satisfactory life or performance. These types and sizes are sometimes used at temperatures above the given limits, but usually at the expense of stability, life or both. In other instances, it may be necessary to reduce the given limits in order to achieve adequate service.

HOT or MEASURING JUNCTIONS and RESPONSE TIMES

UNGROUNDED JUNCTION (U) The welded thermocouple junction is fully isolated from the welded closure of the sheath. This junction provides electrical isolation to reduce problems associated with electrical interference. Ungrounded junctions are also recommended for use in extreme positive or negative temperatures, rapid thermal cycling and for ultimate corrosion resistance of the sheath alloy. All ungrounded junctions exceed 1000 MQ resistance @ 500 V dc at ambient room temperatures.

SHIELDED JUNCTION (S)

The thermocouple wires are welded and recessed inside the sheath with the tip of the sheath open. Insulation is not sealed against process conditions.

GROUNDED JUNCTION (G)

The thermocouple junction is welded securely into the closure end of the sheath, becoming an integral part of the weld. This is a good general purpose, low cost junction providing faster response times than an un-grounded junction of similar sheath diameter. Grounded junctions should not be used with Type T thermocouples, due to the copper wire.

EXPOSED JUNCTION (E)

The thermocouple wires are welded and exposed. The insulation is not sealed against liquid or gas penetration. Recommended where fast response is desired, and corrosive conditions are nonexistent. The exposed hot junction length for 1/8-inch diameter sheaths and above is typically 3/16" past sheath. The exposed junctions for sheath diameters less than 1/8-inch diameter are supplied as shielded junctions.

Typical Junction Response Times (63.2% of a (25 to 100) °C Step Change)

(03.2 /0 01 8	a (23 to 10)) o step (snange)
SHEATH O.D. (inches)	"E" JUNCTION (seconds)	"G" JUNCTION (seconds)	"U" JUNCTION (seconds)
0.020	0.02 s	0.03 s	0.24 s
0.032	0.03 s	0.05 s	0.26 s
0.040	0.03 s	0.06 s	0.28 s
1/16	0.01 s	0.3 s	0.4 s
1/8	0.1 s	0.6 s	1.6 s
3/16	0.2 s	0.9 s	2.4 s
1/4	0.3 s	1.3 s	2.9 s
3/8	0.4 s	3.5 s	7.2 s

Elements of several different materials, base resistances, temperature coefficients, accuracies, and construction styles are available for installation into final RTD temperature sensor assemblies to meet customer specifications. Pyromation's standard RTD constructions utilize both thin film and wire wound elements as specified by the part number. The temperature ranges are either dictated by the construction style or element type whichever is lower. These construction styles are listed below.

LOW RANGE - THIN-FILM CONSTRUCTION (L) (-50 to 200) °C [-58 to 392] °F

The element is welded to Fluoropolymer-insulated, silver-plated copper leads, and then placed inside a specially-cleaned stainless steel sheath. The space surrounding the element and leads is filled and loosely packed with alumina oxide powder to provide good heat transfer times, and to provide a damping cushion against vibration and mechanical shock. The filled sheath is then sealed with low temperature epoxies to prevent moisture penetration.

LOW RANGE - WIRE-WOUND CONSTRUCTION (L) (-200 to 200) °C [-328 to 392] °F

The element is welded to Fluoropolymer-insulated, silver-plated copper leads, and then placed inside a specially-cleaned stainless steel sheath. The space surrounding the element and leads is filled and loosely packed with alumina oxide powder to provide good heat transfer times, and to provide a damping cushion against vibration and mechanical shock. The filled sheath is then sealed with low temperature epoxies to prevent moisture penetration.

MEDIUM RANGE - THIN-FILM CONSTRUCTION (M) (-50 to 480) °C [-58 to 896] °F

The element is welded to fiberglass-insulated, nickel-plated copper leads, and then placed inside a specially-cleaned stainless steel sheath. The space surrounding the element and leads is filled and loosely packed with alumina oxide powder to provide good heat transfer times, and to provide a damping cushion against vibration and mechanical shock. The filled sheath is then sealed with low-temperature epoxies to prevent moisture penetration.

MEDIUM RANGE - THIN-FILM CONSTRUCTION (K) (-50 to 315) °C [-58 to 599] °F

The element is welded to Polyimide-insulated, nickel-plated copper leads, and then placed inside a specially-cleaned stainless steel sheath. The space surrounding the element and leads is filled and loosely packed with alumina oxide powder to provide good heat transfer times, and to provide a damping cushion against vibration and mechanical shock. The filled sheath is then sealed with low-temperature epoxies to prevent moisture penetration.

HIGH RANGE - WIRE-WOUND CONSTRUCTION (H) (-200 to 600) °C [-328 to 1112] °F

The element is welded to nickel leads that are insulated with compacted magnesium oxide (MgO) powder inside the stainless steel sheath. The void surrounding the element is packed with MgO powder and the sheath tip is welded closed with a stainless steel cap. The leads and sheath are sealed with low-temperature epoxies to prevent moisture penetration.

HIGH RANGE - THIN-FILM CONSTRUCTION (H) (-50 to 500) °C [-58 to 932] °F

The element is welded to nickel leads that are insulated with compacted magnesium oxide (MgO) powder inside the 316 stainless steel sheath. The void surrounding the element is packed with MgO powder and the sheath tip is welded closed with a 316 stainless steel cap. The leads and sheath are sealed with low-temperature epoxies to prevent moisture penetration.

RTD Element Terminology

TEMPERATURE COEFFICIENT OF RESISTANCE: The fractional change in element resistance per change of 1 °C , is expressed as $\Omega/\Omega/$ °C or $\Omega \cdot \Omega^{-1} \cdot$ °C⁻¹ or °C⁻¹

TOLERANCE: Initial maximum allowable deviation expressed as $\Delta t(t)$ in °C from nominal temperature/resistance relationship R(t).

SELF-HEATING: Self-heating is the rise in the measured temperature caused by the power dissipated in the element. Self-heating error is affected by the thermal conductivity and velocity of the process being measured and is negligible for most applications.

THERMAL RESPONSE: The time a thermometer takes to respond at a specified percentage to a step change in temperature. To specify response time, it is necessary to declare the percentage of response, usually T_{0.9}, T_{0.5}, or T_{0.1}, which gives 90%, 50% or 10% of the response. The test medium and its flow conditions have to be specified (usually flowing water or flowing air).

MINIMUM IMMERSION DEPTH: Immersion depth at which the change from calibration at full immersion does not exceed 0.1 °C.

REPEATABILITY-STABILITY: The ability of an element to reproduce the same resistance or temperature reading each time it is at equilibrium at a given repeated temperature. Expressed as a ± resistance or temperature value over a given temperature range. This may also be expressed as the stability of its resistance. Typically platinum elements will not change more than 0.04% at 0 °C [32 °F] after receiving ten consecutive shocks from (-200 to 600) °C [-328 to 1112] °F.

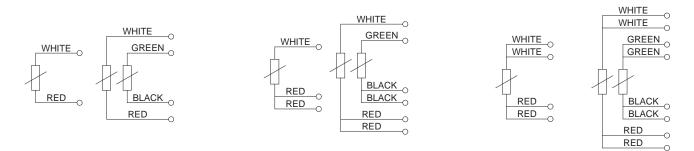
VIBRATION: Pyromation's fully assembled sheathed RTD sensors are designed to withstand an average vibration level of 30 G's using random vibrating frequencies from (20 to 2,000) Hz at ambient temperature. Supporting test results indicate that initial RTD tolerances remain as specified when tested at these vibration levels.

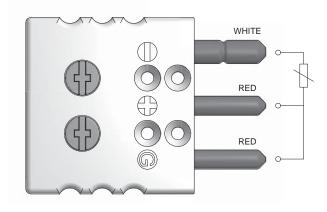
HUMIDITY LIMITS: Sheaths, transition fittings, and lead seals capable of withstanding 100% humidity at normal atmospheric pressure, and at normal ambient temperatures.

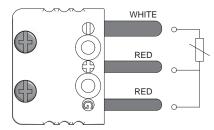
INTERCHANGEABILITY: The amount of allowable difference in readings between two RTD's when placed side by side in a process at the same temperature. This is determined by the allowable RTD tolerance at that particular temperature.

Element Connections

Two-Wire: Provides one connection to each end of the element. This construction is suitable where the resistance of the lead wire may be considered as an additive constant in the circuit, and particularly where the changes in lead resistance due to ambient temperature changes may be ignored.


Three-Wire: Provides one connection to one end of the element and two to the other end of the element. Connected to an instrument designed to accept three wire input, sufficient compensation is usually achieved for leadwire resistance and temperature change in leadwire resistance. This is the most commonly used configuration.


Four-Wire: Provides two connections to each end of the element to completely compensate for leadwire resistance and temperature change in leadwire. This configuration is used where highly accurate temperature measurement is vital.


2-WIRE SINGLE 2-WIRE DUPLEX

3-WIRE SINGLE 3-WIRE DUPLEX

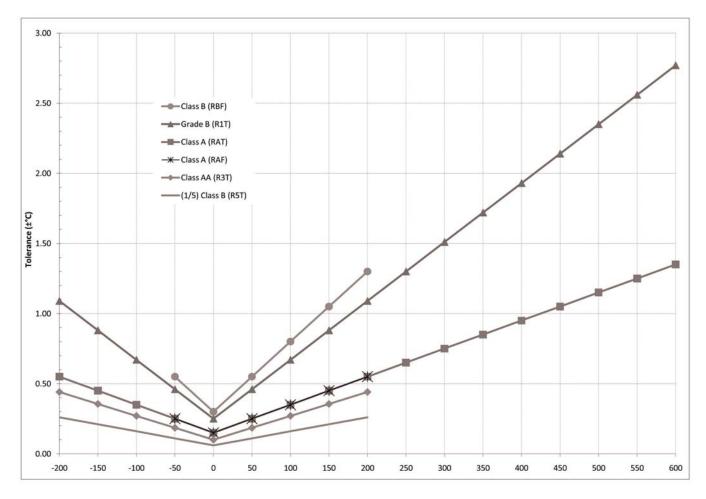
4-WIRE SINGLE **4-WIRE DUPLEX**

Lead resistance has a large effect on RTD temperature measurement accuracy. A 2-wire circuit provides no compensation and can provide large measurement errors. The following table shows the effects of leadwire resistance on temperature measurements using low-temperature RTD assemblies with copper leadwire.

Leadwire Resistance

LEADWIRE-	RESISTANCE-	UNCOMPENSATED 2-WIRE CIRCUITS					
WIRE GAUGE	OHMS PER FOOT	MAX. LENGTH FOR 1 °F ERROR @ 20 °C [68 °F]	ERROR IN °F PER DOUBLE FT.				
30	0.133	0.81 ft	1.24 °F				
28	0.0851	1.26 ft	0.79 °F				
24	0.0333	3.2 ft	0.31 °F				
22	0.0213	5.1 ft	0.198 °F				
20	0.0148	7.27 ft	0.14 °F				
18	0.0083	13.0 ft	0.077 °F				
16	0.0052	20.7 ft	0.048 °F				

STANDARD PLATINUM RTD ASSEMBLIES - Pyromation standard RTD assemblies are constructed using either wire-wound platinum elements or thin-film elements with a reference resistance of 100 ohms at 0 °C, a temperature coefficient 0.003 85 °C⁻¹ and which are in accordance with the following standards:


TEMPERATURE		IEC CL	ASS B ^[1]	ASTM G	RADE B ^[1]	IEC CL	ASS A ^[1]	IEC CLA	ASS AA ^[1]	(1/5) IEC	CLASS B ^[2]
		± (0.12%	6 × R _o) Ω	$\pm (0.1\% \times R_{o}) \Omega$		± (0.06%	6 × R _o) Ω	± (0.04%	6 × R _o) Ω	$\pm (0.02\% \times R_{o}) \Omega$	
		± (0.3 + 0.005 t) °C		± (0.25 + 0.0042 t) °C		± (0.15 + 0.00	± (0.15 + 0.002 t) °C		± (0.1 + 0.0017 t) °C		± (0.06 + 0.001 t) °C
°C	[°F]	°C	[°F]	°C	[°F]	°C	[°F]	°C	[°F]	°C	[°F]
-200	[-328]			1.09	[1.96]	0.55	[0.99]	0.44	[0.79]	0.26	[0.47]
-100	[-148]			0.67	[1.21]	0.35	[0.63]	0.27	[0.49]	0.16	[0.29]
-50	[-58]	.55	[0.99]	0.46	[0.83]	0.25	[0.45]	0.19	[0.34]	0.11	[0.20]
0	[32]	.30	[0.54]	0.25	[0.45]	0.15	[0.27]	0.10	[0.18]	0.06	[0.11]
100	[212]	.80	[1.44]	0.67	[1.21]	0.35	[0.63]	0.27	[0.49]	0.16	[0.29]
200	[392]	1.3	[2.34]	1.09	[1.96]	0.55	[0.99]	0.44	[0.79]	0.26	[0.47]
300	[572]	1.8	[3.24]	1.51	[2.72]	0.75	[1.35]				
400	[752]	2.3	[4.14]	1.93	[3.47]	0.95	[1.71]				
500	[932]	2.8	[5.04]	2.35	[4.23]	1.15	[2.07]				
600	[1112]			2.77	[4.99]	1.35	[2.43]				

1. International Standard, IEC 60751 2. American Standard, ASTM E1137

Where: |t| = value of temperature without regard to sign, °C

[1] The equations represent values for 3- and 4-wire PRTs. Caution must be exercised with 2-wire PRTs due to lead resistance.

[2] This tolerance can only be met with a 4-wire PRT.

800-876-0036

Leadwire Transition Fitting Dimensions

	SHEATH	FITTING	FITTING LE	NGTH
CODE	DIAMETERS (inches)	O.D. (inches)	W/SPRING (inches)	W/O SPRING (inches)
15,16,19	0.020	3/8	2 (5/8)	1 (3/16)
15,16,19	0.032	3/8	2 (5/8)	1 (3/16)
15,16,19	0.040	3/8	2 (5/8)	1 (3/16)
15,16,19	1/16	1/4	2 (5/8)	1 (3/16)
15,16,19	1/16 ^[1]	3/8	2 (5/8)	1 (3/16)
15,16,19	1/8	1/4	2 (5/8)	1 (3/16)
15,16,19	1/8[1]	3/8	2 (5/8)	1 (3/16)
15,16,19	3/16	3/8	2 (5/8)	1 (3/16)
15,16,19	1/4	3/8	2 (5/8)	1 (3/16)
15,16,19	3/8	7/16	2 (5/8)	1 (3/16)
[1] Used wi	ith flexible armor	tubina. dur	olex T/C's.	

[1] Used with flexible armor tubing, duplex T/C's, and wire codes P3, P1, and F3

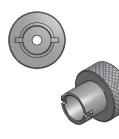
Compression Fitting Pressure Rating Table

CODE	05A	05A, 05B, 05C	05A, 05B	05A, 05B, 05C	05B, 05C					
Sheath O.D. & Wall Thickness	1/6" O.D. x 0.0077"	1/8" O.D. x 0.012"	3/16" O.D. x 0.020"	1/4" O.D. x 0.028"	3/8" O.D. x 0.049"					
TEMPERATURE	MAXIMU (PSIG)	MAXIMUM ALLOWANCE WORKING PRESSURE (PSIG)								
(-29 to 149) °C [-20 to 300] °F	3300	2850	3150	3350	3900					
204 ºC [400 ºF]	3200	2750	3050	3250	3800					
260 °C [500 °F]	3000	2550	2850	3000	3500					
316 ºC [600 ºF]	2800	2400	2700	2850	3300					
371 ºC [700 ºF]	2700	2350	2600	2750	3200					
427 °C [800 °F]	2650	2300	2550	2650	3100					
482 ºC [900 ºF]	2600	2200	2450	2600	3050					
538 ºC [1000 ºF]	2400	2100	2300	2450	2850					

Sheath	Mounting Fitting Dim	ensions		
CODE	STYLE	SHEATH O.D. (inches)	NPT SIZE (inches)	LENGTH (inches)
01A	303 SS one-time adjustable	1/16, 1/8, 3/16, 1/4	1/8	1 5/16
05A	316 SS one-time adjustable	1/16, 1/8, 3/16, 1/4	1/8	1 1/4
05B	316 SS one-time adjustable	1/8, 3/16, 1/4, 3/8	1/4	1 7/8
05C	316 SS one-time adjustable	1/8, 1/4, 3/8	1/2	1 13/16
15A	Brass one-time adjustable	1/8, 3/16, 1/4	1/8	1 1/4
15B	Brass one-time adjustable	3/16, 1/4, 3/8	1/4	1 3/8
15C	Brass one-time adjustable	1/4, 3/8	1/2	1 1/2
10A	303 SS re-adjustable	1/16, 1/8, 3/16	1/8	1 1/4
10B	303 SS re-adjustable	1/4, 3/8	1/4	2 7/16
10C	303 SS re-adjustable	1/4, 3/8	1/2	2 7/16
12A	316 SS re-adjustable	1/16, 1/8, 3/16, 1/4	1/8	1 1/4
12B	316 SS re-adjustable	1/8, 3/16, 1/4, 3/8	1/4	1 1/2
12C	316 SS re-adjustable	1/8, 1/4, 3/8	1/2	1 3/4
11A	Brass re-adjustable	1/16, 1/8, 3/16, 1/4	1/8	1 19/64
11B	Brass re-adjustable	1/8, 3/16, 1/4, 3/8	1/4	1 9/16
11C	Brass re-adjustable	1/4, 3/8	1/2	1 13/16
19C	303 SS spring-loaded well ftg.	3/16, 1/4	1/2	2 1/4
8A	316 SS fixed bushing	All sizes	1/8	5/8
8B	316 SS fixed bushing	All sizes	1/4	11/16
8C	316 SS fixed bushing	All sizes	1/2	15/16
8D	316 SS fixed bushing	All sizes	3/4	1
6HN	Steel hex fitting	1/8, 3/16, 1/4, 3/8	1/2	2
8HN	316 SS hex fitting	1/8, 3/16, 1/4, 3/8	1/2	2
8RNDC	316 SS reducing hex fitting	1/8, 3/16, 1/4, 3/8	3/4 x 1/2	2
9HNB	303 SS hex fitting	1/8, 3/16, 1/4, 3/8	1/4	1 3/16
13A	Fixed bayonet fitting	1/8, 3/16	N/A	1 5/8
14	Adjustable flange	1/8, 3/16, 1/4, 3/8	N/A	1 1/2
16A	Adustable bayonet fitting	1/8	N/A	1 5/8


Calculations are based on the following criteria: 316 stainless steel sheath, ultimate tensil stress of 75,000 PSI for seamless tube, Conservative Barlow Formula and safety factor of 4.0.

Bayonet Caps


7/16" I.D. single slot Order code: A

12 mm I.D. double slot Order code: B

12 mm O.D. dual pin Order code: C

15 mm I.D. double slot Order code: E

pyromalion

Corrosive Service Guide to Materials for Sheaths and Thermowells Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels (Fluoropolymer coated thermowells and/or Fluoropolymer sheaths may be substituted for all corrosive agents listed)

	TEMP. ℃	°F	CONC. %	RECOM. MATERIAL	CORROSIVE AGENT	TEMP. ⁰C	TEMP. °F	CONC. %	RECOM. MATERIAL
	199	[390]	ALL	316 SS	Chlorine (Gas)	93	[200]	ALL	Monel®
	143	[290]	80%	Hast. C		199	[390]	ALL	316 SS ^[1]
	199	[390]	50%	316 SS	Chlorine (Gas - Moist)	66	[150]	ALL ALL	Hast C
	143 132	[290] [270]	80% ALL	Carp. 20 ^[1] Hast. C	Chloroacetic Acid Chloroform	182 93	[360] [200]	ALL	Hast. B Nickel
	199	[390]	ALL	316 SS ^[1]	Chioroionn	93	[200]	ALL	Carp. 20 ^[1]
Acetone	199	13901	ALL	316 SS	Chromic Acid	93	[200]	50%	Titanium
	199	13901	ALL	304 SS		93	[200]	50%	Hast. C ^[1]
	93	[200]	ALL	Hast. C	Citric Acid	127	[260]	ALL	Hast. C
	199	[390]	ALL	316 SS ^[1]		93	[200]	ALL	Carp. 20 ^[1]
	143	[290] [290]	ALL	Hast. B	Copper Chloride	88 88	[190] [190]	ALL ALL	Titanium
	143 93	[200]	ALL	Nickel ^[1] 446 SS	Copper Nitrate	oo 149	[300]	ALL	Hast. C ^[1] 304 SS
	88	[190]	ALL	316 SS ^[1]	Copper Sulfate	93	[200]	ALL	Hast. C
	93	2001	ALL	Titanium		199	[390]	ALL	316 SS ^[1]
	93	[200]	ALL	316 SS ^[1]	Corn Oil	238	[460]	ALL	TFE
Ammonia (Anhydrous)	293	[560]	ALL	316 SS		193	[380]	ALL	FEP
	93	[200]	ALL	304 SS		171	[340]	ALL	316 SS ^[1]
	88	[190]	ALL	Titanium	Crude Oil	93	[200]	ALL	<u>304</u> SS
	293	[560]	ALL	Nickel ^[1]	Cyanogen Gas	238	[460]	ALL	TFE
	71 27	[160]	50% ALL	Nickel Steel		193 171	[380]	ALL ALL	FEP 316 SS ^[1]
	27 82	[80] [180]	ALL	Steel ^[1]	Ether	88	[340] [190]	ALL	304 SS
	93	[200]	ALL	Carp. 20	Ethyl Acetate	93	[200]	ALL	Titanium
Ammonium Sulfate	93	[200]	SAT.	Hast. B		199	[390]	ALL	316 SS ^[1]
	143	[290]	SAT.	304 SS ^[1]	Ethyl Chloride (Dry)	293	[560]	ALL	316 SS
	93	[200]	10 - 40%	Titanium	Ethylene Glycol	93	[200]	ALL	Carp. 20
	199	[390]	10 - 40%	316 SS ^[1]		93	[200]	ALL	304 SS ^[1]
	143	[290]	ALL	304 SS	Ethylene Oxide	21	[70]	ALL	Hast. C
	254	[490]	ALL	304 SS		199	[390]	ALL	316 SS ^[1]
Barium Chloride (Saturated)	93	[200]	ALL	Hast. C	Fatty Acids	199	[390]	ALL	316 SS
	293 104	[560] [220]	ALL 50%		Ferric Chloride	143 27	[290]	ALL ALL	Titanium Hast. C ^[1]
	104	[220]	ALL	Carp. 20 316 SS ^[1]	Ferric Sulfate	49	[80] [120]	ALL	Carp. 20
	88	[190]		304 SS		88	[120]	10%	316 SS
	104	220	ALL	Carp. 20	Ferrous Sulfate	27	[80]	1070	Titanium
	104	220	ALL	304 SS ^[1]		93	[200]	ALL	304 SS ^[1]
	199	[390]	ALL	Titanium	Formaldehyde	49	[120]	ALL	304 SS
	199	[390]	ALL	304 SS ^[1]		49-293	[120-560]	50%	304 SS ^[1]
	238	[460]	ALL	TFE	Formic Acid (Anhydrous)	93	[200]	50%	Carp. 20
	193	[380]	ALL	FEP	Freon (F-11)	204	[400]	ALL	
	93 60	[200] [140]	ALL 12.5%	Carp. 20 ^[1] Hast. C	Furfural	204 199	[400] [390]	ALL ALL	316 SS ^[1] Nickel
	199	[390]	ALL	316 SS	Fullulai	199	[390]	ALL	304 SS ^[1]
	293	[560]	ALL	Hast. C	Gallic Acid	238	[460]	ALL	TFE
	93	200	ALL	Nickel ^[1]		193	[380]	ALL	FEP
Brine Acid	60	[140]	ALL	Hast. C		199	[390]	ALL	316 SS ^[1]
	27	[80]	ALL	Brass ^[1]	Gasoline (Unleaded)	154	[310]	ALL	Hast. C
	293	[560]	ALL	Tantalum		16	[60]		446 SS
5.4	93	[200]	ALL	Aluminum ^[1]		171	[340]		Steel ^[1]
	171 93	[340] [200]	ALL	Steel	Capalina (Pafinad)	238 193	[460] [380]		TFE FEP
	93 188	[370]	ALL	Titanium 316 SS ^[1]	Gasoline (Refined)	88	[380]		Steel ^[1]
Butyl Alcohol	199	[390]	ALL	316 SS		27	[80]	ALL	Nickel
	143	[290]	ALL	Carp. 20	Glucose	193	[380]	ALL	316 SS ^[1]
	199	13901	ALL	316 SS ^[1]		27	[80]	ALL	Hast. B
	93	[200]	ALL	TFE	Glue	60	[140]	ALL	Steel ^[1]
	193	[380]	ALL	FEP		127	[260]	ALL	304 SS
	171	[340]	ALL	316 SS ^[1]	Glycerine	88	[190]	50%	Titanium
	238	[460]	ALL	TFE	Hydrobromic Acid	121	[250]	50%	Hast. B ^[1]
	193	[380]	ALL	FEP	Libertura altela sita Aladiat	60	[140]	38%	Hast. B
	93	[200]	ALL	316 SS ^[1]	Hydrochloric Acid	238	[460]	ALL	TFE
	171 93	[340] [200]	ALL	Hast. C Carp. 20 ^[1]	Hydrocyanic Acid	193 171	[380] [340]	ALL ALL	FEP 316 SS ^[1]
	93	[200]	50%	Hast. C		238	[340]	ALL	TFE
Calcium Hydroxide	00	[190]	SAT.	304 SS ^[1]	Hydroflouric Acid	193	[380]	ALL	FEP
Calcium Hydroxide	88			Carp 20	,	93	[200]	ALL	Hast. C ^[1]
	88 293	[560]	ALL						
Carbonic Acid		[560] [340]	ALL	316 SS ^[1]		293	[560]	ALL	Carp. 20
Carbonic Acid Carbon Dioxide (Dry)	293 171 427	[340] [800]		Carp. 20 316 SS ^[1] Brass	Hydrogen Chloride (Gas, Dry)		[560] [100]	ALL ALL	Carp. 20 304 SS
Carbonic Acid Carbon Dioxide (Dry) Carbonated Beverages	293 171 427 100	[340] [800] [212]	ALL ALL ALL	Brass 304 SS	Hydrogen Chloride (Gas, Dry) Hydrogen Flouride (Dry)	293 38 199	[560] [100] [390]	ALL ALL ALL	Carp. 20 304 SS 304 SS ^[1]
Carbonic Acid Carbon Dioxide (Dry) Carbonated Beverages Carbon Disulfide	293 171 427 100 93	[340] [800] [212] [200]	ALL ALL ALL ALL	Brass 304 SS Titanium	Hydrogen Flouride (Dry)	293 38 199 88	[560] [100] [390] [190]	ALL ALL ALL 90%	Carp. 20 304 SS 304 SS ^[1] Hast. C
Carbonic Acid Carbon Dioxide (Dry) Carbonated Beverages Carbon Disulfide	293 171 427 100	[340] [800] [212]	ALL ALL ALL	Brass 304 SS		293 38 199	[560] [100] [390]	ALL ALL ALL	Carp. 20 304 SS 304 SS ^[1]

Monel® and Inconel® are registered trademarks of Special Metals Corporation.

Corrosive Service Guide to Materials for Sheaths and Thermowells

Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels (Fluoropolymer coated thermowells and/or Fluoropolymer sheaths may be substituted for all corrosive agents listed)

CORROSIVE AGENT	°C ℃	°F	CONC. %	RECOM. MATERIAL	CORROSIVE AGENT	°C ℃	°F	CONC. %	RECOM. MATERIA
lodine	83	[190]	ALL	Hast. C	Sea Water (Cavitation)				316 SS
	21	[70]	ALL	Nickel	Soap Solutions	16	[60]	ALL	446 SS
Kerosene	238	[460]	ALL	TFE	-	54	[130]	ALL	Nickel ^[1]
	193	[380]	ALL	FEP	Sodium Bicarbonate	171	[340]	20%	316 SS
	171	[340]		Steel ^[1]	Sodium Bisulfite	71	[160]	10%	316 SS
Ketones	32	[90]	ALL	Hast. C		93	[200]	10 - 40%	Carp. 20
	127	[260]	ALL	316 SS ^[1]	Sodium Carbonate	93	[200]	30%	Carp. 20
_actic Acid	154	[310]	ALL	Titanium		293	[560]	10-100%	Hast. B ^[1]
	116	240	ALL	Hast. B ^[1]	Sodium Chloride	27	1081	30%	Nickel
_ime (Sulfur)	238	14601	ALL	TFF	Sodium Flouride	71	[80] [160]	ALL	Monel®
	193	380	ALL	FEP		77	[170]	ALL	Carp. 20
	154	[310]	ALL	316 SS ^[1]	Sodium Hydroxide	104	[220]	ALL	Monel®
inseed Oil	60	[140]	ALL	Carp. 20		71	[160]	ALL	316 SS ^[1]
	27	[08]	ALL	Steel ^[1]	Sodium Nitrate	171	[340]	60%	316 SS
Magnesium Chloride	143	[290]	ALL	Nickel	Sodium Nitrite	93	[200]	Saturated	Titanium
agricsian onionac	88	[190]	50%	Carp. 20 ^[1]	Couldmin Marite	93	[200]	40%	304 SS ^[1]
Magnesium Hydroxide	93	[200]	ALL	304 SS	Sodium Peroxide	16	[60]	10%	446 SS
Agnesium Sulfate	93	[200]	60%	Nickel		171	[340]	10%	316 SS ^[1]
agnesium Sullate	171	[200]	ALL	316 SS ^[1]	Sodium Phosphate Acid	93	[200]	ALL	Titanium
Aercuric Chloride	143	[340]	ALL	Tantalum	Soulum r hospitale Aciu	93	[200]	ALL	304 SS ^[1]
hereune Chionae	77				Sodium Silicate	27	[200]	ALL	446 SS ^[1]
Acroum/	293	[170]	10%	Hast. C ^[1]	Soulum Silicate		[80] [330]	ALL	316 SS ^[1]
Aercury		[560]	ALL	304 SS	Sodium Sulfata	166	[300]		
Methyl Chloride (Dry)	171	[340]	ALL	316 SS	Sodium Sulfate	199	[390]	ALL	316 SS
Aethylene Chloride	93	[200]	ALL	Carp. 20	Sodium Sulfide	238	[460]	50%	TFE
/ilk	93	[200]		304 SS		193	[380]	50%	FEP
laphtha	16	[60]	ALL	446 SS		93	[200]	50%	316 SS ^[1]
	116	[240]	ALL	304 SS ^[1]	Sodium Sulfite	93	[200]	10%	304 SS
latural Gas	238	[460]		TFE	Sodium Thiosulfate	16	[60]	25%	446 SS
	193	[380]		FEP		116	[240]	ALL	316 SS ^[1]
	43	[110]		Steel ^[1]	Steam (Low Pressure)				Inconel
lickel Chloride	93	[200]	80%	Hast. C					304 SS ^[1]
lickel Sulfate	82	180	10%	Tantalum	(Medium Pressure)				Nickel
	93	[200]	ALL	304 SS ^[1]	(304 SS ^[1]
Nitric Acid	21	[70]	ALL	304 SS	(High Pressure)				316 SS ^[1]
	93	[200]	40%	304 SS	Sulfur	293	[560]	ALL	304 SS
Nitrobenzene	143	[290]	ALL	Carp. 20	Galia	871	[1600]	ALL	Alloy 556
NILIODENZENE	171	[340]	ALL	316 SS ^[1]	Sulfur Chloride (Dry)	32	[90]	ALL	Tantalum
Dleic Acid	138	[280]	ALL	316 SS	Ganar Onionae (Dry)	293	[560]	ALL	Nickel ^[1]
	49	[120]	40%	Hast. C	Sulfur Dioxide (Dry)	49	[120]	ALL	Steel
Dleum	116	[240]	ALL	316 SS ^[1]	Sullui Dioxide (Diy)	293	[560]	ALL	316 SS ^[1]
					Sulfur Triovide (Dry)		[000]		TFE
Dxalic Acid	93 93	[200]	ALL	Tantalum	Sulfur Trioxide (Dry)	238	[460]	ALL	
2	93	[200]	ALL	Carp. 20 ^[1]		193	[380]	ALL	FEP
Dxygen	271	[520]	ALL	Tantalum		293	[560]	ALL	304 SS ^[1]
	16	[60]	ALL	446 SS	Sulfuric Acid	38	[100]	100%	Carp. 20
	171	[340]	ALL	316 SS ^[1]		121	[250]	60%	Hast. B
Palmitic Acid	238	[460]	ALL	TFE	Sulfurous Acid	71	[160]	ALL	Titanium
	193	[380]	ALL	FEP		177	[350]	ALL	Carp. 20
	199	[390]	ALL	304 SS ^[1]	Tannic Acid	93	[200]	10 - 20%	Titanium
Phenol (Carbolic Acid)	293	[560]	ALL	316 SS		93	[200]	ALL	304 SS ^[1]
Phosphoric Acid	93	[200]	50-85%	Hast. C	Tartaric Acid	199	[390]	ALL	304 SS
hosphoric	43	[110]	50-85%	Carp. 20	Titanium Tetrachloride	27	[80]	ALL	Carp. 20
•	171	[340]	ALL	316 SS		138	[280]	ALL	Titanium
Phosphoric Solutions	27	[108]	ALL	Titanium	Toluene (Toluol)	171	[340]	ALL	Steel
Picric Acid	21	[70]	ALL	Aluminum		93	12001	ALL	304 SS
	199	[390]	ALL	316 SS ^[1]	Trichloroacetic Acid	238	[460]	ALL	TFE
otassium Bromide	93	[200]	30%	Titanium		193	[380]	ALL	FEP
	93	[200]	30%	446 SS		93	[200]	ALL	Hast. C ^[1]
otassium Carbonate	93	[200]	50%	304 SS	Trichloroethylene	71	[160]	ALL	Inconel®
Potassium Chlorate	171	[340]	30%	316 SS	Turpentine	88	[190]	ALL	304 SS
Potassium Hvdroxide	93	[200]	50%	Nickel	Whiskey and Wine	000	1.001	ALL	304 SS
Potassium Nitrate	171	[200]	80%	Aluminum	Xylene (Xylol)	88	[190]	ALL	446 SS
Ulassiui i vilidle		[540]	80%	446 SS ^[1]	Zinc Chloride	82	[180]	to 70%	Titanium
	277								
Potassium Permanganate	21	[70]	20%	Hast C.	Zina Sulfata	293	[560]	ALL	Hast. B ^[1]
	171	[340]	20%	316 SS ^[1]	Zinc Sulfate	93	[200]	SAT.	316 SS
Potassium Sulfate	171	[340]	10%	316 SS					
Propane	60	[140]	ALL	446 SS					
	27	[80]	ALL	Brass					
Pyrogallic Acid	27	[80]	ALL	Copper	Reprinted with permissio	n: Scheitz	er/Corros	ion Resistance	Tables 4th
, 0	171	[340]	ALL	316 SS ^[1]	Edition, Revised and Exp				
Salicylic Acid	116	[240]	ALL	Hast. C	Inc., N.Y. 1995		0-02		or Donner,
	171	[340]	ALL	316 SS ^[1]	110., 11. 1. 1995				

All materials listed are rated < 2 Mils penetration/year except as noted: [1] = < 20 Mils penetration/year

Monel® and Inconel® are registered trademarks of Special Metals Corporation.

Read known temperature in bold face type. Corresponding temperature in degrees Fahrenheit will be found in column to the right. Corresponding temperature in degrees Celsius will be found in column to the left.

INTERPOLATION FACTORS

°F			
8			
6			
4			
2			
0			

TEMPERATURE CONVERSION FORMULA

°**C** = (°F - 32) ÷ 1.8

°**F** = (°C x 1.8) + 32

0 to 100						100 to 1000 10						1000	000 to 2000						2000 to 3000					
°C		۰F	°C		۰F	°C		۰F	°C		۰F	°C		۰F	°C		۰F	°C		۰F	°C		۰F	
-17.8	0	32.	10.0	50	122.0	38	100	212	260	500	932	538	1000	1832	816	1500	2732	1093	2000	3632	1371	2500	4532	
-17.8	1	33.8	10.6	51	123.8	43	110	230	266	510	950	543	1010	1850	821	1510	2750	1099	2010	3650	1377	2510	4550	
-16.7	2	35.6	11.1	52	125.6	49	120	248	271	520	968	549	1020	1868	827	1520	2768	1104	2020	3668	1382	2520	4568	
-16.1	3	37.4	11.7	53	127.4	54	130	266	277	530	986	554	1030	1886	832	1530	2786	1110	2030	3686	1388	2530	4586	
-15.6	4	39.2	12.2	54	129.2	60	140	284	282	540	1004	560	1040	1904	838	1540	2804	1116	2040	3704	1393	2540	4604	
-15.0	5	41.0	12.8	55	131.0	66	150	302	288	550	1022	566	1050	1922	843	1550	2822	1121	2050	3722	1399	2550	4622	
-14.4	6	42.8	13.3	56	132.8	71	160	320	293	560	1040	571	1060	1940	849	1560	2840	1127	2060	3740	1404	2560	4640	
-13.9	7 8	44.6	13.9	57 58	134.6	77 82	170 180	338 356	299 304	570 580	1058	577 582	1070 1080	1958 1976	854 860	1570 1580	2858 2876	1132	2070 2080	3758 3776	1410 1416	2570 2580	4658	
-12.8	9	48.2	15.0	59	138.2	88	190	374	310	590	1070	588	1090	1994	866	1590	2894	1143	2000	3794	1421	2590	4694	
-12.2	10	50.0	15.6	60	140.0	93	200	392	316	600	1112	593	1100	2012	871	1600	2912	1149	2100	3812	1427	2600	4712	
-11.7	11	51.8	16.1	61	141.8	99	210	410	321	610	1130	599	1110	2030	877	1610	2930	1154	2110	3830	1432	2610	4730	
-11.1	12	53.6	16.7	62	143.6	100	212	413	327	620	1148	604	1120	2048	882	1620	2948	1160	2120	3848	1438	2620	4748	
-10.6	13	55.4	17.2	63	145.4	104	220	428	332	630	1166	610	1130	2066	888	1630	2966	1166	2130	3866	1443	2630	4766	
-10.0	14	57.2	17.8	64	147.2	110	230	446	338	640	1184	616	1140	2084	893	1640	2984	1171	2140	3884	1449	2640	4784	
-9.44	15	59.0	18.3	65	149.0	116	240	464	343	650	1202	621	1150	2102	899	1650	3002	1177	2150	3902	1454	2650	4802	
-8.89	16	60.8	18.9	66	150.8	121	250	482	349	660	1220	627	1160	2120	904	1660	3020	1182	2160	3920	1460	2660	4820	
-8.33	17	62.6	19.4	67	152.6	127	260	500	354	670	1238	632	1170	2138	910	1670	3038	1188	2170	3938	1466	2670	4838	
-7.78	18 19	64.4 66.2	20.0	68 69	154.4	132	270 280	518 536	360 366	680 690	1256 1274	638 643	1180 1190	2156	916 921	1680 1690	3056 3074	1193 1199	2180 2190	3956 3974	1471	2680 2690	4856 4874	
	-													-			-			-				
-6.67 -6.11	20 21	68.0 69.8	21.1 21.7	70 71	158.0 159.8	143	290 300	554 572	371 377	700 710	1292	649 654	1200 1210	2192 2210	927 932	1700 1710	3092 3110	1204	2200 2210	3992 4010	1482 1488	2700 2710	4892	
-5.56	22	71.6	22.2	72	161.6	154	310	590	382	720	1328	660	1220	2228	938	1720	3128	1216	2220	4028	1493	2720	4928	
-5.00	23	73.4	22.8	73	163.4	160	320	608	388	730	1346	666	1230	2246	943	1730	3146	1221	2230	4046	1499	2730	4946	
-4.44	24	75.2	23.3	74	165.2	166	330	626	393	740	1364	671	1240	2264	949	1740	3164	1227	2240	4064	1504	2740	4964	
-3.89	25	77.0	23.9	75	167.0	171	340	644	399	750	1382	677	1250	2282	954	1750	3182	1232	2250	4082	1510	2750	4982	
-3.33	26	78.8	24.4	76	168.8	177	350	662	404	760	1400	682	1260	2300	960	1760	3200	1238	2260	4100	1516	2760	5000	
-2.78	27	80.6	25.0	77	170.6	182	360	680	410	770	1418	688	1270	2318	966	1770	3218	1243	2270	4118	1521	2770	5018	
-2.22	28 29	82.4 84.2	25.6 26.1	78 79	172.4	188	370 380	698 716	416 421	780 790	1436	693 699	1280 1290	2336 2354	971 977	1780 1790	3236 3254	1249 1254	2280 2290	4136	1527 1532	2780 2790	5036 5054	
														-			-			-				
-1.11	30 31	86.0 87.8	26.7	80 81	176.0	199 204	390 400	734	427 432	800 810	1472	704	1300 1310	2372 2390	982 988	1800 1810	3272 3290	1260 1266	2300 2310	4172	1538 1543	2800 2810	5072 5090	
0.50	32	89.6	27.8	82	179.6	210	410	770	438	820	1508	716	1320	2408	993	1820	3308	1271	2320	4208	1549	2820	5108	
0.56	33	91.4	28.3	83	181.4	216	420	788	443	830	1526	721	1330	2426	999	1830	3326	1277	2330	4226	1554	2830	5126	
1.11	34	93.2	28.9	84	183.2	221	430	806	449	840	1544	727	1340	2444	1004	1840	3344	1282	2340	4244	1560	2840	5144	
1.67	35	95.0	29.4	85	185.0	227	440	824	454	850	1562	732	1350	2462	1010	1850	3362	1288	2350	4262	1566	2850	5162	
2.22	36	96.8	30.0	86	186.8	232	450	842	460	860	1580	738	1360	2480	1016	1860	3380	1293	2360	4280	1571	2860	5180	
2.78	37	98.6	30.6	87	188.6	238	460	860	466	870	1598	743	1370	2498	1021	1870	3398	1299	2370	4298	1577	2870	5198	
3.33	38	100.4	31.1	88	190.4	243 249	470	878	471	880	1616	749	1380	2516	1027	1880 1890	3416	1304	2380	4316	1582	2880	5216	
3.89	39	102.2	-	89	192.2	-	480	896	477	890	1634	-	1390		1032		3434	1310	2390	4334	1588	2890	5234	
4.44 5.00	40 41	104.0	32.2 32.8	90 91	194.0 195.8	254	490	914	482 488	900 910	1652	760 766	1400 1410	2552 2570	1038	1900 1910	3452 3470	1316	2400 2410	4352 4370	1593 1599	2900 2910	5252 5270	
5.56	41	105.8	33.3	91	195.6				400	910	1670	700	1410	2570	1043	1910	3488	1321	2410	4370	1604	2910	5270	
6.11	43	107.0	33.9	93	199.4				499	930	1706	777	1430	2606	1043	1930	3506	1332	2430	4406	1610	2930	5306	
6.67	44	111.2	34.4	94	201.2				504	940	1724	782	1440	2624	1060	1940	3524	1338	2440	4424	1616	2940	5324	
7.22	45	113.0	35.0	95	203.0				510	950	1742	788	1450	2642	1066	1950	3542	1343	2450	4442	1621	2950	5342	
7.78	46	114.8	35.6	96	204.8				516	960	1760	793	1460	2660	1071	1960	3560	1349	2460	4460	1627	2960	5360	
8.33	47	116.6	36.1	97	206.6				521	970	1778	799	1470	2678	1077	1970	3578	1354	2470	4478	1632	2970	5378	
8.89	48	118.4	36.7	98	208.4				527	980	1796	804	1480	2696	1082	1980	3596	1360	2480	4496	1638	2980	5396	
9.44	49	120.2	37.2	99	210.2				532	990	1814	810	1490	2714	1088	1990	3614	1366	2490	4514	1643	2990	5414	
			37.8	100	212.0				538	1000	1832				1093	2000	3632				1649	3000	5432	

