Distributed By: M&M Control Service, Inc. www.mmcontrol.com/powershome.php RI

HEAVY DUTY BRONZE GLOBE CONTROL VALVES

R

SINGLE SEAT BRONZE BODY/REDUCED TRIM

- ▶ 1/2" Union Ends
- ANSI Class 250 Body Rating
- ANSI Class III Close off ►
- Stainless Steel Trim ►
- Modified Equal Percent Flow Characteristic
- Reduced Trim Sizes
- 46"Pneumatic Diaphragm Field Reversible Actuators
- ► Stainless Steel Hardware
- ► NAMUR Standard Yoke for Accessories

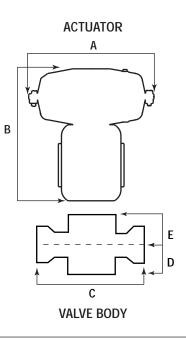
DESCRIPTION

The rugged Powers Type VE single seat bronze body valve is primarily used for steam and water modulating applications where precision low flow is required.

A WATTS INDUSTRIES CO.

Additionally, the modified equal percent characteristic provides fine throttling action at low valve plug travel. Stainless steel trim is standard.

DIMENSIONAL INFORMATION (For other sizes consult factory)


Pneumatic Actuators

Actuator*	A	В	lbs.	
46″	10″	10-3/8″	14	

Valve Body

Valve Body	C	D	E	lbs.
1/2	5-5/8 ″	1.13/16″	2-7/16″	4

*See Actuator Select Tables on page 5.

APPLICATION

To properly size a valve either follow these criteria or use the PowerSize[®] Valve Sizing Program available at www.powerscontrols.com.

- **Body Material and Rating.** Refer to Body Temperature/ Pressure Ratings table to insure your application fits in the acceptable operating range. Also determine that the valve body material is compatible with your media.
- Trim Material. Stainless steel.
- Flow Coefficient (CV Rating). Refer to PowerSize Valve Sizing Program, Powers' Engineering Guide (form #PEG v1), or specifying engineer's data to determine Cv. Select a valve size that most closely matches the calculated Cv from the Flowing ΔP , Close Off ΔP , and Cv Ratings table.
- **Flowing Pressure Drop** (Δ**P**). To avoid cavitation and its accompanying trim damage, the following operating ΔP limits should be observed.

BODY TEMPERATURE/PRESSURE RATINGS

ANSI Standard Ratings—Bronze Bodies

(psig)	
400	
385	
365	
335	
300	
250	
	400 385 365 335 300

- Liquid Service. ΔP less than the quantity (0.66 x inlet pressure) + 10. Additionally, flowing ΔP should not exceed 100 psi.
- Steam Service. ΔP less than the quantity (0.5 x inlet pressure) + 7.35. Additionally, flowing ΔP should not exceed 100 psi.
- Actuator Selection. The actuator must have enough force to close off against line pressure or maximum △P. The 3–15 and 1–17 columns in the Close Off △P and Cv Ratings table apply to valves with control signals coming directly from I/P transducers. The 0–30 column applies to valves using Accritem[®] type pneumatic controllers or valves equipped with a positioner or 0–30 PSI I/P transducer.

PS593VE

Type VE CLOSE OFF ΔP AND CV RATINGS

				Maximum △P in PSI at Close-Off						
					Fail Closed		Fail Open Signal to Actuator			
			Actuator Codes		Signal to Actua	tor				
Valve	cv	Plug	Pneumatic		Pneumatic		Pneumatic			
Size			Actuator	3–15 PSI	1–17 PSI	0-30 PSI	3–15 PSI	1–17 PSI	0-30 PSI	
1/2	0.25	1/4	46 / 4C	200	200	200	200	200	200	
A-port				200	200	200	200	200	200	
1/2	0.5	1/4	46 / 4C	200	200	200	200	200	200	
B-port				200	200	200	200	200	200	
1/2	1	1/4	46 / 4C	200	200	200	200	200	200	
C-port		_		200	200	200	200	200	200	
1/2	2	1/4	46 / 4C	200	200	200	200	200	200	
D-port				200	200	200	200	200	200	

NOTE: A 200 psi ΔP limit is imposed for trimlife considerations.

Page 4

SIZING REFERENCE

STEAM TABLE

Steam Pressure PSIG	Temp. °F	Temp. °C	Sensible Heat BTU/Ib.	Latent Heat BTU/Ib.	Total Heat BTU/Ib.
0	212	100	180	971	1151
10	239	115	207	952	1159
25	266	130	236	934	1170
50	297	147	267	912	1179
75	320	160	290	896	1186
100	338	170	309	881	1190
125	353	178	325	868	1193
150	365	185	339	858	1197
200	387	197	362	838	1200
250	406	208	381	821	1202
300	422	217	399	805	1204
400	448	231	438	778	1216
500	470	243	453	752	1205
600	489	254	475	729	1204

LOAD SIZING CALCULATIONS

Heating Water with Steam

Quick Method

Lbs. /hr. =
$$\frac{\text{GPM}}{2} \times \Delta^{-1}$$

Precise Method

Lbs. / hr. =
$$\frac{\text{GPM x } 500 \text{ x } \Delta \text{T}}{\text{h}_{f_n}}$$

Heating or Cooling Water with Water

 $GPM_1 = GPM_2 x \quad \frac{^{\circ}F water_2 temp rise or drop}{^{\circ}F water_1 temp rise or drop}$

Heating or Cooling Water

$$GPM = \frac{BTU/hr.}{(°F water temp. rise or drop) \times 500}$$

Heating Oil with Steam

Lbs. /hr. =
$$\frac{\text{GPM}}{4}$$
 x (°F oil temp. rise)

GLOSSARY OF TERMS

t = Time in Hours

Cp = Specific Heat of Liquid

S = Specific Gravity of Fluid

W = Weight in Lbs.

 ΔT = Temperature rise of fall in °F

hf_q = Latent Heat of Steam

RECTANGULAR TANK CAPACITY IN GALLONS

 $Gallons = \frac{Height x Width x Length (inches)}{230}$ or Gallons = H x W x L(ft.) x 7.5

PS593VE

CIRCULAR TANK STORAGE CAPACITY IN GALLONS

Heating Air with Water

 $GPM = 2.16 \text{ x} \frac{CFM \text{ x (°F air temp. rise)}}{1000 \text{ x (°F water temp drop or rise)}}$

Heating Liquids with Steam

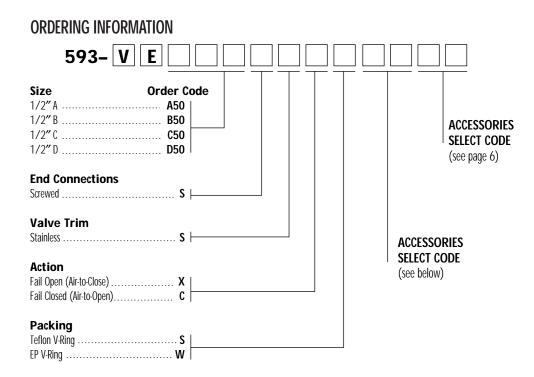
Lbs. / hr. =
$$\frac{\text{GPM x 60 x CP x W}}{h_{f_g}}$$
 x ΔT

Heating Liquids in Steam Jacketed Kettles

General Liquid Heating

Lbs. / hr. =
$$\frac{W \times Cp}{h_{f_{n}} \times t} \times \Delta T$$

Heating Air with Steam


Lbs. / hr. =
$$\frac{CFM}{900} \times \Delta T$$

CONVERSION FACTORS

1 lb. Steam/Hr. = 1000 BTU/Hr. 1 Cubic Meter = 265 U.S. Gallons 1 Cubic Foot Water = 62.4 lbs. 1 PSI = 2.04 inches of Mercury 1 PSI = 2.3 feet of Water 1 PSI = 27.7 inches of Water 1 U.S. Gallon Water = 231 Cubic inches 1 U.S. Gallon Water = 8.33 lbs.

PS593VE

Page 5

ACTUATOR SELECT CODE

CODE	PNEUMATIC DIAPHRAGM ACTUATORS
46	46 Sq. In., 1" Max Valve Stroke with Standard Springs, adjustable start w/ 7 ~ 12 lb. Fixed span.
4X	46 Sq. In., 1" Max Valve Stroke with Extended Springs (requires positioner), adjustable start w/22 lb. span.
4C	46 Sq. In., 1" Max Valve Stroke with Extreme Cycle Springs, adjustable start w/ 7~ 12 lb. Fixed span.

ACTUATOR COMPATIBILITY

1/2″	46" Diaphragm

Page 6

ORDERING INFORMATION (cont'd.)

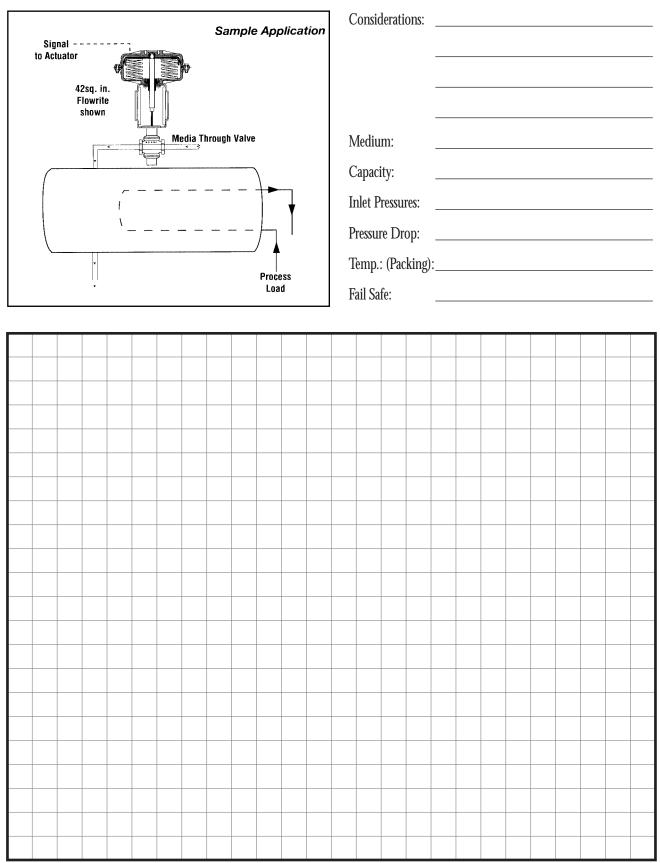
ACCESSORIES SELECT CODE

BELLO	DFRAM 1000 I/P'S	UTILI	TY POSITIONER AND I/P	NO A	CCESSORIES
<u>Code</u> IS TS US	<u>Description</u> 3–15 psi 1–17 psi 3–27 psi	<u>Code</u> BS UTILI Code	Description 4–20 mA TY POSITIONER Description	<u>Code</u> OS	<u>Description</u> No accessories
CONT <u>Code</u> ES	ROL/AIR TYPE 900X I/P <u>Description</u> 0–30 psi	PS RS SS	3–15 PSI 3–9 PSI 9–15 PSI		

I/P TRANSDUCERS

The "standard" 3–15 psi signal was originally designed as a transmission signal, not a valve actuation signal. Unbalanced control valves have their operational limits lowered when forced to operate with this 3–15 psi signal. The Fluid Controls Institute (in Standard 87-2) has recommended that a 1–17 psi air signal range be used when directly actuating a control valve without a positioner. Powers concurs with this recommendation, and therefore, offers a 1–17 psi I/P transducer and a 0–30 psi I/P transducer for maximum close-off. 3–15 psi I/P transducers should be used in conjunction with positioners.

POSITIONERS


Positioners are used for one or more of the following reasons:

- 1) To split range valves.
- 2) To eliminate unwanted valve movement caused by line pressure variations
- 3) To minimize the effects of "stick-slip"
- 4) To speed response time and/or
- 5) To increase close-off rating when I/Ps are used.

Page 7

PS593VE

CALCULATION/SKETCH AREA

For more information on FLOWRITE II[®] or other quality Powers products, visit us at our website **powerscontrols.com**.

Pneumatic Temperature Controllers

Temperature Regulators

Mixing Valves

Control Valves

Now available, a fast easy way to size a valve... PowerSize®. A free software solution available at www.powerscontrols.com or through any Powers sales representative.

© November 2002 **Powers, a Watts Industries Co.** USA Office Phone: 800.669.5430 • Canada Office Phone: 888.208.8927 www.powerscontrols.com

PS593VE 0242

Printed in U.S.A.